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Abstract

A system of two masses, moving along a single straight line, is considered. The first is connected by a spring to a fixed
point, while the second is connected by a spring to the first and is in contact with a belt with dry friction moving with
constant velocity. A piecewise-constant model of dry friction with different coefficients of friction, sliding and at rest, is
used. The limit “stick-slip” type cycles are investigated analytically. It is shown numerically that in the case of equal masses
there are forward and reverse limit cycles. The period of the oscillations of the forward and reverse cycles increases as
the ratio of the stick and slip coefficients of friction increases, and decreases when the velocity of the belt increases. The
reverse cycle exists for all values of the parameters of the problem, while the forward cycle exists up to a certain critical
value of the ratio of the stick and slip coefficients of friction, and this critical value increases when the velocity of the belt
increases.
© 2008 Elsevier Ltd. All rights reserved.

A similar problem was investigated in Ref. 1 in the case when the amplitude of the oscillations is constant, there is
a rational ratio between the frequencies and for a piecewise-cubic model of the friction, and a method was proposed
for deriving approximate analytic averaged equations. A piecewise-cubic model of the friction was also considered in
Refs. 2–5.

1. Formulation of the problem

Consider a system of two loads with masses m1 and m2. The load m1 is connected to a fixed wall by a
weightless linear spring with stiffness k1, while the load m2 is connected to m1 by a spring of stiffness k2.
The load m2 is placed on a horizontal belt, which moves with constant velocity ṽ ≥ 0. The displacements of
the loads from the position in which the springs are undeformed will be denoted by x̃1 and x̃2 (Fig. 1). When
x̃1 = x̃2 = 0, when there is no friction force, the system is in a stable position of equilibrium. We will use the
piecewise-constant model of dry friction with a coefficient of friction f between the belt and the load m2,6–10 in
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Fig. 1.

Fig. 2.

the form (Fig. 2)

(1.1)

A dot denotes a derivative with respect to t̃, fs and fr(fr ≥ fs) are the slip and stick coefficients of friction, proportional
to the normal reaction. The force of dry friction is a function of the difference of the velocities ˙̃x2 − v and the difference
of the coordinates x2 − x1.

We will change to dimensionless quantities, choosing as the characteristic units for measuring time, mass and
length

√
m1/(k1 + k2), m2 and fs/(k1 + k2). The dimensionless variables are expressed in terms of the old variables

as follows:

In dimensionless variables, the equations of motion of the system in matrix form are

(1.2)

Depending on which of the conditions ẋ2 < v, ẋ2 > v or ẋ2 = v is satisfied, the motion of the system corresponds
to one of three different modes, each of which is described by a system of linear inhomogeneous differential equations.
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2. Linear modes of motion

We will first construct a general solution of the homogeneous Eq. (1.2) (with F = 0). Using the linear transformation

we change to normal coordinates Z = (z1, z2)T , in which the homogeneous Eq. (1.2) takes the form

(2.1)

Hence it follows that ω− �= ω+ for any values of the parameters, since otherwise this leads to the contradictory
conditions �� = 1 and �2� = 0.

In the original coordinates X, the solution of Eq. (2.1) has the form

(2.2)

We will now consider the solution of the inhomogeneous systems of equations for the modes ẋ2 < 2 and ẋ2 > 2.
The solutions X+(t) and X−(t) for the modes ẋ2 < v and ẋ2 > v are given by the equations

(2.3)

with the choice of the plus and minus signs respectively. The particular stationary solution of these systems has the
form

(2.4)

Solutions of systems (2.3) are obtained in the form of the sum of the particular solution and the general solution
(2.2) of the homogeneous system (1.2) (for F = 0)

(2.5)
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When ẋ2 = v when the condition for remaining in this mode is satisfied

(2.6)

the system loses one degree of freedom and its motion is given by the equations

(2.7)

the general solution of which in matrix form is

(2.8)

We will trace the change in the linear modes during the motion of the system. Suppose that at the initial instant t = 0
the condition ẋ2(0) > v is satisfied, and at the instant t = t1 the condition ẋ2(t1) > v holds.

If x2(t1) − x1(t1) > �/�, the velocity of the second body with respect to the motion of the belt changes sign (ẋ2 < v)
and motion begins by virtue of the system of differential equations (2.3) in the opposite direction to the motion of the
belt. This motion will continue until the instant t = t2, ẋ2(t2) = v. Then, when the condition x2(t2) − x1(t2) ≥ −�/� is
satisfied, the further motion will be described by system (2.7) and when x2(t2) − x1(t2) < −�/� it will be described by
system (2.3).

If at the instant of time t = t1 the condition x2(t1) − x1(t1) ≤ �/� is satisfied, the second body will move together
with the belt, by virtue of system (2.7). This motion will continue up to the instant t = t3, x2(t3) − x1(t3) = μ/χ. The
system then returns to the mode ẋ2 < v, and so on.

3. The fundamental property of the limit cycle

We will consider the conditions for the simplest limit cycle, consisting of two successive modes of linear motion, to
exist. Suppose the phase trajectory of this cycle (Fig. 3) has a period T + � and successively passes through the points

where the following limitations are imposed on the position and velocity of the limit cycle

(3.1)

Fig. 3.
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Then the arc AB is determined by the solution X+(t) when 0 < t ≤ T, and the arc BC is determined by the solution
X0(t-T) when T ≤ t ≤ T + �.

Taking the autonomy of system (2.7) into account, the point

can also be obtained by reverse motion along the arc CB along the solution X0(t) (2.8) with initial condition
(X(0), Ẋ(0))T . Assuming that both motions begin at the point A, the condition B = D for the limit cycle to be periodic
can be written in the form

In expanded form, by virtue of relations (2.5) and (2.8), the last condition has the form

(3.2)

where Hi = Hi(�), �i = �i (T) (i = 1,2,3).
We will prove the following fundamental property of the limit cycle

(3.3)

or

(3.4)

We will prove property (3.3) in homogeneous variables

(3.5)

in which condition (3.3) takes the form

(3.6)

The condition of periodicity of the limit cycle B = D (3.2) in the variables (3.5) takes the form

(3.7)

By virtue of relations (2.4) and (2.8) we have

(3.8)

Then, condition (3.7) can be rewritten in the form of a system of equations in (YA, ẎA)

(3.9)

Similarly, starting the construction of the limit cycle from the point B in the phase space (Y, Ẏ ), we can write
equations for the initial conditions at the point B = (YB, ẎB)T . To do this we transfer the origin of the reading of time
to the point B. Then, when 0 ≤ t ≤ �, by virtue of the autonomy of system (2.7), the limit cycle has the form
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When � ≤ t ≤ � + T the limit cycle has the form

We will write the condition for the periodicity of the limit cycle A = C in the form

(3.10)

By virtue of relations (3.8) we can rewrite (3.10) in the form of a system of equations in (YB, ẎB)

(3.11)

Note that when (YB, ẎB) is replaced by (−YA, ẎA), the system of equations (3.11) becomes (3.9). Suppose (Y, Ẏ ) is
the solution of system (3.9). Then, in view of the last property, (−lY, lẎ ) is the solution of system (3.11) where l is a
certain non-zero constant. By virtue of the fact that the second components Ẏ and lẎ of the solutions of systems (3.9)
and (3.11) are the same and ẏ2A = ẏ2B = v in view of condition (3.1), we have l = 1. Then, YB = −YA, ẎB = ẎA holds
for the solutions of systems (3.9) and (3.11), which also proves relation (3.3).

4. Periodic solutions and limit cycles

If, for specified �, � the condition ẋ2 < v is satisfied for any t, the system can only be in one mode (2.3). In this
case there are two principal oscillations of the system about the equilibrium position (x1, x2) = (h1, h2) with frequencies
�−/(2�) and �+/(2�) and initial conditions defined by the conditions

(4.1)

In the limiting case, when the trajectory of the principal oscillations in phase space is in contact with the plane
ẋ2 < v, the initial conditions are defined by the relations

(4.2)

The principal oscillations in the limiting case (4.2) only exist when h2 − h1 = �/�, i.e. when � = 1.
We will obtain the limit cycles with two reversals. For these we express x1(0), x2(0), ẋ1(0) in terms of � and T using

properties (3.1) and (3.3), which we rewrite in the form

(4.3)

Eq. (4.3) are not independent. If we express x1(0), x2(0), ẋ1(0) from the last three equations

(4.4)

and substitute into the first equation of (4.3), we obtain an identity.
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Property (3.4), by virtue of relation (2.2) and the last expression, is equivalent to the following system of two
equations:

(4.5)

where �ij = �ij(T) (j = 1, 2, 3, 4, i = 1, 2, 3) are the elements of the matrix �i. Eq. (4.5) depend only on �, T, �, � and
form a closed system of equations in � and T. Here � can be expressed from Eq. (4.5) as a function of T

(4.6)

Substituting expression (4.6) into the first equation of (4.5), we obtain, for fixed � and 	, the equation �(T, �) = 0.
We will obtain the limit cycles for � = 0.6 and 	 = 1 numerically. From the solutions of the equation �(T, �) = 0 we

select only two limit cycles: the forward (slow) and reverse (fast) cycles. The first limit cycle is the forward cycle in
the sense that the masses m1 and m2 at the reversal point A have accelerations of equal sign, i.e. ẍ1(0) < 0, ẍ2(0) < 0
(Fig. 4), and is slow in the sense that when � = 0 it is produced from the principal oscillation with initial conditions
(4.2) when the upper sign is chosen, with the lowest frequency �−/(2�). The second limit cycle is a reverse cycle in
the sense that the masses m1 and m2 at the reversal point A have accelerations of opposite sign, i.e. ẍ1(0) > 0, ẍ2 < 0
(Fig. 5), and is fast in the sense that when � = 0, it is produced from the principal oscillation with initial conditions
(4.2), when the lower sign is chosen with frequency �+/(2�) to be greater than �−/(2�) by virtue of the definition of
�± (2.1).

It has been shown numerically that the phase trajectory of the limit cycles obtained in four-dimensional phase space
is symmetrical about the plane formed by the straight lines x1 = h1 and x2 = h2, i.e. the projection of the phase trajectory
onto the plane (x1, ẋ1) and (x2, ẋ2) is symmetrical about the straight lines x1 = h1 ≈ 2.5 and x2 = h2 ≈ 4.17, represented
by the dash-dot curve. In Figs. 4 and 5 we show half of the projections of the phase trajectories onto the (x1, ẋ1) and
(x2, ẋ2) planes. The left curve corresponds to the projections of the phase trajectory onto the (x1, ẋ1) plane, while the
right curve corresponds to the projection onto the (x2, ẋ2) plane, where the dashes indicate the part of the trajectory
corresponding to the mode x2 = v.

In Fig. 6 we show the form of the curve �(T, �) = 0 for the forward cycle (the right-hand curve) and the reverse
cycle (the left-hand curve). Other solutions of the equation �(T, �) = 0 are not considered.

It has been shown numerically that for the reverse cycle, when � increases, the value of T decreases (Fig. 6), while
the value of � and the period � + T increase. The reverse cycle exists for all values of � and its form does not change
when � changes. When � → ∞, the value of T approaches 0, and the value of � and the period of the limit cycle
approach 2�.

For the forward cycle it has been shown numerically that when � increases the value of T decreases (Fig. 6), while
� and the period � + T increase. For small � the form of the oscillations of the forward cycle is close to sinusoidal in
shape (Fig. 4, � ≈ 0.15). When � increases there will be an oscillation with twice the frequency in the forward cycle,
as a result of which in the (t,x2) plane there will be four additional points of inflection (Fig. 4, � ≈ 0.45), and then, as
� increases, the oscillation with double frequency becomes predominant (Fig. 4, � ≈ 1.2, 4.53).

The forward cycle exists up to a critical value �* ≈ 4.53 and disappears when � > �*. This occurs by virtue of the
fact that in the (x2, ẋ2) plane when � is close to �*, a loop appears which rises to the section ẋ2 = v as � increases.
When � = �* this loop reaches ẋ2 = v, and the limit cycle degenerates into oscillations which are not a limit cycle in
view of the breakdown of conditions (3.3). Since � = (� − 1)/�v, the results obtained for � = 0.6 and � = 1 indicate that
the reverse cycle exists for all values of x, �, v. For large ratios between the slip and stick coefficients of friction the
forward cycle disappears, and the critical value of this difference increases as the velocity of the belt v increases.
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Fig. 4.

Fig. 5.
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Fig. 6.
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